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ABSTRACT 
 

     This study proposes a physics-informed neural network (PiNN) framework for 
modeling one-dimensional heat conduction with phase change in artificial ground 
freezing (AGF). By incorporating the governing equations into the training process, the 
model simultaneously predicts the temperature field and the moving phase-change 
interface. A multi-network architecture is adopted to estimate the spatiotemporal 
temperature distribution and interface position. The model addresses a backward 
problem by reconstructing the complete temperature field from sparse synthetic data. 
The results demonstrate the potential of the PiNN framework for AGF monitoring under 
limited information conditions. 
 
1. INTRODUCTION 
 

In recent years, deep learning has emerged as a promising alternative for 
modeling physical systems. Among these approaches, the physics-informed neural 
network (PiNN) framework has obtained significant attention due to its ability to 
incorporate governing physical laws directly into the training loss function (Cuomo et al., 
2022; Rassi et al., 2019). PiNNs can solve partial differential equations without relying 
entirely on data, utilizing only the mathematical form of the equations while also 
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integrating available measurements to enhance prediction accuracy. This combination 
of data-driven learning and physics-based modeling makes PiNNs particularly 
advantageous in scenarios with sparse or incomplete data, where conventional 
numerical methods are less effective. 

Artificial ground freezing (AGF) is a transient, two-phase heat conduction 
process in which unfrozen soil is progressively transformed into frozen soil through heat 
extraction via embedded freezing pipes (Choi et al., 2024; Park et al., 2024; Pham et al., 
2021). In practical AGF applications, detailed initial and boundary conditions are rarely 
available, and temperature measurements from embedded sensors are typically sparse. 
Therefore, a robust prediction model must be capable of reconstructing the 
spatiotemporal temperature field and tracking the evolution of the phase-change 
interface using limited prior information. By embedding physical laws into the network 
architecture and incorporating real sensor data during training, the PiNN model 
leverages both physics and observational data to enhance predictive performance. 

This study adopt the PiNN architecture introduced by Cai et al. (2021) to model 
one-dimensional heat conduction with phase change. The primary objective is to apply 
this model to the AGF problem, inferring the temperature distribution from limited 
measurement data and demonstrating the potential of PiNNs for monitoring and 
forecasting in AGF construction. 
 
2. MATHMETHICAL FORMULATION 
 

The ground freezing process is modeled as a one-dimensional, transient heat 
conduction problem with a moving phase-change interface. The physical domain is 
defined as Ω = {(𝑥𝑥, 𝑡𝑡): (0,𝐿𝐿) × (0,𝑇𝑇)}, representing the spatial and temporal evolution 
of the system. Within this domain, a moving interface 𝑠𝑠(𝑡𝑡) ∈ [0,𝐿𝐿] separates the frozen 
and unfrozen regions, denoted as Ω1 = {𝑥𝑥 < 𝑠𝑠(𝑡𝑡)} and Ω2 = {𝑥𝑥 > 𝑠𝑠(𝑡𝑡)}, respectively, 
as illustrated in Fig. 1. In each subdomain Ω𝑖𝑖 (𝑖𝑖 = 1, 2), the temperature field 𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡) 
is governed by the classical heat conduction equation: 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕 − 𝛼𝛼𝑖𝑖

𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥2 = 0 (𝑖𝑖 = 1, 2) (1) 

where 𝛼𝛼𝑖𝑖 is the thermal diffusivity of phase 𝑖𝑖. The problem is constrained by initial and 
boundary conditions. At the moving interface, the temperatures in the frozen and 
unfrozen domains must match, as required by thermal equilibrium. Furthermore, the 
energy balance at the moving interface is expressed as: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝐾𝐾1

𝜕𝜕𝑢𝑢1(𝑠𝑠(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑥𝑥 − 𝐾𝐾2

𝜕𝜕𝑢𝑢2(𝑠𝑠(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑥𝑥   (2) 

where 𝐾𝐾𝑖𝑖 is the thermal parameter for each phase. 
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Fig. 1 Schematic of 1D heat conduction with two phases 
3. PHYSICS-INFORMED DEEP LEARNING MODEL 
 

To solve the one-dimensional heat conduction problem with phase transition, 
this study employed a multi-network PiNN architecture originally proposed by Cai et al. 
(2021a). This approach simultaneously estimates two key quantities: the 
spatiotemporal temperature field and the time-dependent position of the phase-change 
interface. 

The model comprises two networks. The first network receives spatial and 
temporal inputs and outputs the temperature profiles for both frozen and unfrozen 
regions. The second network predicts the temporal evolution of the interface position 
using time as its sole input. The temperature predictions from the first network are 
conditioned on the interface location estimated by the second network, thereby 
determining the corresponding phase regions. 

Both subnetworks are implemented as fully connected feedforward neural 
networks, each consisting of three hidden layers with 100 neurons per layer. The 
hyperbolic tangent (tanh) function is adopted as the activation function for all hidden 
layers. Weights are initialized using the Glorot scheme to promote stable convergence. 
Model training is performed using the Adam optimizer with a mini-batch stochastic 
gradient descent strategy. The effectiveness of the PiNN architecture has been 
validated by Park et al. (2025). 
 
4. TEMPERATURE RECONSTRUCTION 
 

Synthetic temperature data were generated via forward simulation using the 
validated model to replicate measurement conditions typically encountered in AGF 
operations. Specifically, a flat-panel freezing condition was applied by imposing a 
constant temperature of -5°C at 𝑥𝑥=0, while the initial temperature across the domain 
was set to 5°C. The simulation produced temperature data over time at predefined 
observation points. To address the temperature reconstruction problem under realistic 
AGF conditions, where initial and boundary conditions are often unknown, the total loss 
function was modified to enable reconstruction of the complete temperature field and 
the moving phase-change interface using only limited observational data. 

The reconstructed temperature field and interface location are shown in Fig. 2. 
Although the backward prediction resulted in slightly higher errors compared to the 
forward validation case, the overall reconstruction was consistent with the forward 
simulation. These results confirm that the proposed PiNN framework can successfully 
reconstruct the full temperature field from sparse measurements, demonstrating its 
strong potential for practical application in AGF operations. Future work should focus 
on extending this approach to higher-dimensional problems. 
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Fig. 2 Simulated and inversely predicted temperature field 
5. CONCLUSIONS 
 

This study demonstrated the effectiveness of a multinetwork physics-informed 
neural network (PiNN) framework for modeling one-dimensional heat conduction with 
phase change, as representative of artificial ground freezing (AGF). The PiNN model 
was applied to reconstruct the temperature distribution across the entire domain using 
sparse synthetic data. By accurately reconstructing both the full temperature field and 
the interface trajectory from limited measurements, the model demonstrated strong 
potential for practical AGF scenarios where complete initial and boundary conditions 
are typically unavailable. This capability highlights the advantage of integrating physical 
constraints and sensor data within a unified deep learning framework. 

While the current implementation is limited to a one-dimensional domain, future 
work should aim to extend the approach to two- and three-dimensional settings to 
better capture the complexities of field-scale AGF applications. Such advancements 
would further enhance the applicability of PiNNs for real-time monitoring, prediction, 
and control in geotechnical engineering. 
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